
AberdeenGroup

Profile

Lazy Software, Inc.

201 Washington Street

One Boston Place

Boston, MA 02109

Tel.: (305) 776-8055

www.lazysoft.com

Lazy Software: A New Type of Database for Faster Development and
Lower Costs

Preface
Today’s traditional databases are a straitjacket around development.

These databases lessen an enterprise’s speed-to-market competitive advantage and
increase key application administrative costs by making the programmer’s life
more difficult, especially in two areas:

• “Direct-to-data” programming that addresses data items directly rather
than at an abstract level. “Direct-to-data” programming forces the pro-
grammer to write substantial unnecessary transactional code and makes
frequently desired changes to metadata cause a “ripple effect” of crashes
of undocumented applications accessing the underlying data.

• Code-to-data “impedance mismatch” in which the code is object-oriented
but the data accessed is relational, causing complex coding to translate
objects to relational rows and columns and vice versa.

This Profile describes Lazy Software’s Sentences DB, Sentences DE, and Lazy-
View. Together, these form a comprehensive database solution based on the in-
novative “associative” data model. This solution not only enables far faster pro-
gramming of data-accessing applications, but also avoids the long-term adminis-
trative costs of “software sclerosis” caused by difficulties in upgrading legacy
applications.

Executive Summary
Lazy Software’s database solution includes Sentences 3.0 (which in turn includes
the Sentences DB database engine and the Sentences Deployment Environment,

Lazy Software, Inc. 2

© 2002 Aberdeen Group, Inc. Telephone: 617 723 7890

260 Franklin Street, Suite 1700 Fax: 617 723 7897

Boston, Massachusetts 02110-3112 www.aberdeen.com

or Sentences DE), and the LazyView database aggregation capability. Sentences
DB, written in Java, offers full database functionality using the associative model of
data organization. Sentences DE, a Java applet, provides development and de-
ployment tools for business rule, query, schema, and “profile” (Sentences DB’s in-
novative access control and security mechanism) creation. LazyView provides an
ability to view and query data across associative, relational, and other databases
that matches the capabilities of Enterprise Information Integration (EII) solutions
profiled in the recent Aberdeen report, EII: The New Way to Leverage e-
Information (April 2002).

Sentences runs on Windows, Solaris, Linux, AIX, and IBM iSeries platforms. It in-
tegrates with other suppliers’ databases via XML (Extensible Markup Language)
and other protocols for data exchange, as well as LazyView’s EII capabilities. Asso-
ciative data storage can be partitioned in a highly granular way, allowing users to
distribute Sentences databases across multiple platforms at the data-item level.

Aberdeen finds that Sentences is already proving its worth in the following areas:

• Rapid development support — Avoiding object relational mismatch and al-
lowing transaction development at a higher level can deliver order-of-
magnitude savings in new application code size and existing application
upgrades.

• Architectural flexibility — Sentences’ granular partitioning effectively sup-
ports today’s “mass-deployment” architectures that distribute the embed-
ded database of a mission-critical application across thousands of far-flung
local offices.

• Support for EII — LazyView’s ability to operate according to the associative
model on relational and multimedia data gives new data-mining power to a
wider class of end-users.

• Flexible security — Sentences DB’s ability to create database partition
“chapters” with end-user “profiles” allows a wider range of access control.

Lazy Software complements Sentences and LazyView with services that stress sup-
port and training on how to design and use an associative model database most
effectively.

Lazy Software has staked out an area of database technology into which relational
database suppliers will find it difficult to venture. Moreover, as the IT and ISV
pendulum swings back toward a greater degree of new mission-critical and mass-
deployment application development, the importance of Lazy Software’s advan-
tages in rapid application development can only increase. Lazy Software’s Sen-
tences and LazyView solutions are therefore worth an especially close look from IT
buyers.

Lazy Software, Inc. 3

© 2002 Aberdeen Group, Inc. Telephone: 617 723 7890

260 Franklin Street, Suite 1700 Fax: 617 723 7897

Boston, Massachusetts 02110-3112 www.aberdeen.com

The Immediate Need for More Rapid Development
Aberdeen research shows that even in these times of IT cost cutting, application
development and upgrading continue in many areas at a high pace. Inevitably,
upkeep of existing applications requires not only problem fixing, but also adding
new capabilities as organizations evolve. Proactive IT managers seek out tomor-
row’s competitive advantage applications today. Even cost-cutting efforts typically
involve efforts to leverage existing corporate information more effectively and with
more “bang for the buck,” requiring new data-mining and data-integration efforts.

In all of these areas, more rapid development is a high priority. The essence of to-
day’s competitive advantage applications, such as supply chain “e-business integra-
tion” and internal customer relationship management (CRM), is speed to market,
and hence, speed to program. Likewise, cost cutting where development and up-
grading are inevitable must involve shortening development times — IT organiza-
tions still have not made any move to pay programmers less.

Moreover, the immediate future holds the prospect of greater need for rapid devel-
opment, not less. The major new IT effort on the horizon is Web services develop-
ment. As shown in the recent Aberdeen White Paper, Web Services Development:
On IT’s Critical Path (August 2002), Web services development is highly complex.
To succeed, IT organizations’ and ISVs’ Web services development must speed de-
velopment as much as possible by simplifying the task for the programmer.

The Long-Term Need to Avoid “Software Sclerosis”
The year 2000 (Y2K) problem delivered two strong messages to Fortune 1000
chief executive officers (CEOs):

1. The enterprise is far more dependent on legacy applications than previ-
ously imagined.

2. These applications can be changed en masse, using replicable processes.

In the past, the two obvious strategies that IS organizations have used to deal with
legacy applications were “leaving it alone” (the “status quo” approach) and the
“make-or-buy” approach. The latter approach is a radical change in existing soft-
ware, and both approaches are increasingly costly ways of doing business.

Consider the status quo approach. Before the Y2K problem arrived, the typical IS
organization spent little time planning to change key applications — often because
it saw no low-cost way of doing so. However, what the enterprise has often failed
to understand is that the net result of the status quo approach has been constantly
increasing the following “inventory costs” of legacy applications:

• Maintenance costs — associated with outdated applications about which
key information has been lost and whose software and hardware is no
longer adequately supported inside the organization or by suppliers

Lazy Software, Inc. 4

© 2002 Aberdeen Group, Inc. Telephone: 617 723 7890

260 Franklin Street, Suite 1700 Fax: 617 723 7897

Boston, Massachusetts 02110-3112 www.aberdeen.com

• Opportunity costs — incurred as maintenance spending crowds out
new application development and packaged-application acquisition
spending

• Inefficiency costs — incurred as the failure to proactively migrate causes
crisis-mode costly legacy application fixes, and periodic directives to
“move to a new platform” waste time and effort on flawed or failed ma-
jor software improvement projects

These costs often feed on themselves in a vicious circle, leading to software sclero-
sis: Choosing to maintain instead of improve an application means that the appli-
cation continues to age, not only increasing maintenance, opportunity, and ineffi-
ciency costs, but also making the gap between the legacy application and today’s
technologies wider, making improvement more costly and access to legacy content
more difficult.

“Direct-to-data” programming is a prime cause of software sclerosis. Where multi-
ple applications use a relational database table, each must be changed when the
table itself changes  because the code in each application depends on the struc-
ture of the table. Moreover, as applications age, it becomes less and less likely that
IT organizations even know that the application is invoking the table —
consequently, schema changes typically cause hard-to-fix crashes in one or more
mission-critical applications.

Lazy Software’s Associative Model
The associative model stores data items as “triples” that capture the value of the
data item, its “type,” and its relationship to other data items (this is a very loose
description). In traditional databases (including both relational and object data-
bases), the data items and to some extent their “types” are described in the data-
base, whereas global types and relationships between them are to some extent
handled in a separate “metadata” dictionary or as “schema declarations” in appli-
cation code.

By placing type/“entity”/”object” and relationship information in the database, the
associative model ensures that all application code can access the en-
tity/relationship information rather than the code. This, in turn, means that appli-
cation developers using Sentences DB and DE can avoid both the added code in-
volved in translating object-oriented programs to relational data storage and the
“software sclerosis” involved with “direct-to-data” programming. The net result for
the Sentences user is not only shorter programs more rapidly developed, but also
greater flexibility of the resulting code because data-access code can apply to mul-
tiple data formats of the same or associated “types.” By applying LazyView, the
programmer can associate and write common code not only across associative
storage, but also across “views” of relational and object storage.

Lazy Software, Inc. 5

© 2002 Aberdeen Group, Inc. Telephone: 617 723 7890

260 Franklin Street, Suite 1700 Fax: 617 723 7897

Boston, Massachusetts 02110-3112 www.aberdeen.com

Associative model data is also much more easily partitioned than relational stor-
age. In the Sentences implementation, an information store is made up of “chap-
ters,” each of which can be placed on a different machine. The information store
also has a “profile” for each end-user, stating which chapters that the end-user may
see. A chapter can be as small as one data item, and therefore, access control and
distribution of the database can be as broad or as fine-grained as an IT organiza-
tion wishes — in sharp contrast to any traditional database.

LazyView takes the ability to distribute and aggregate data to another level by ex-
tending it to non-associative information stores. Like an EII solution, LazyView
collects cross-database metadata and uses it to allow end-user and programmatic
transactions, such as queries across a wide variety of data stores. Because this
metadata itself is stored in a LazyView database, it is exceptionally easy to use the
LazyView solution to serve not only as a “database veneer,” but also as a “cache”
database that can store frequently accessed data from the back-end information
stores.

How Lazy Software Meets the Need for Rapid Development
Lazy Software’s Sentences solution speeds transactional programming by allowing
programmers to refer to data at a higher, or metadata, level. Past developer ex-
perience with 4GLs (fourth-generation languages) has shown that in many applica-
tions involving a significant amount of data access, higher level data references can
speed development by an order of magnitude — three weeks instead of nine
months.

Moreover, developers using Sentences DE can program more rapidly because de-
velopers no longer need to write code that translates efforts to access an object
class in an object-oriented programming language to efforts to access parts of a
table in a relational information store  the so-called object-relational mismatch.
Past studies have shown that this unnecessary code can constitute 35% to 40% of a
program’s total code, and it is often unusually difficult to write. Thus, it is reason-
able to expect 40% time savings in many instances, as well as increasing code qual-
ity, by avoiding object relational translations.

If an application is already using Sentences DB as an embedded database, upgrad-
ing to the next application version is relatively straightforward. Because develop-
ers can program “at the metadata level,” there are far fewer instances in which
changing entities or relationships to accommodate new features or improve per-
formance requires changing all applications that access the database.

How Lazy Software Solutions Meet the Need to Avoid Software Sclerosis
As noted above, “programming at the metadata level” decreases the need to
change applications in order to upgrade them to the next version, making legacy
application upgrading much easier. This is equally true where the application is a

Lazy Software, Inc. 6

© 2002 Aberdeen Group, Inc. Telephone: 617 723 7890

260 Franklin Street, Suite 1700 Fax: 617 723 7897

Boston, Massachusetts 02110-3112 www.aberdeen.com

legacy one that the user seeks to update in order to take advantage of new soft-
ware technologies.

Moreover, the associative model makes it much easier for users to change data
formats without disturbing the applications that invoke the data. Thus, users can
change an entity or relationship without causing the multiple applications invok-
ing that data to crash.

How Lazy Software Solutions Meet Database Criteria

Performance/Scalability
A surprising amount of space in relational databases is taken up by “nulls,” unnec-
essary data items included so that each relational row will have exactly the same
number of fields as any other. The associative model, while perhaps storing more
“metadata” information, does allow the database designer to eliminate these null
fields. The resultant space savings can have a significant impact on performance
because less information stored usually correlates with fewer I/Os to access the in-
formation on disk.

A second potential scalability improvement is due to the fact that Sentences DB
does not use the “update-in-place” strategy for data-item changes, which is a fea-
ture of other databases. Much of the slowdown in typical database performance as
the transaction rate increases is caused by the typical database locking the data
item being updated until the changed item is copied back to disk — preventing all
other operations on the data item until the lock is released. By contrast, Sen-
tences DB affects all updates (and deletions) by adding triples to the database. Al-
though this kind of data preservation could potentially add space to the database
and hence slow performance, the tried-and-true methods of archiving and reor-
ganizing should avoid any such slowdown.

A third potential performance improvement comes from the fact that relationships
between data items are stored in the data itself. For large-scale or complex query-
ing, this means that rather than “join” different sets of data to determine if data
meets a criterion, a query can tell by looking at the data — saving significant num-
bers of I/Os per item.

Manageability
There is, of course, no doubt that there is a learning curve involved in making full
use of the associative model for administrators used to the arcana of relational da-
tabase administration. However, Sentences compensates for this initial awkward-
ness by decreasing the administrator’s job thereafter.

In particular, as noted above, Sentences requires much less frequent and easier
changes to the metadata when new application functionality is desired. Moreover,

Lazy Software, Inc. 7

© 2002 Aberdeen Group, Inc. Telephone: 617 723 7890

260 Franklin Street, Suite 1700 Fax: 617 723 7897

Boston, Massachusetts 02110-3112 www.aberdeen.com

Sentences’ chapter/profile access control gives the administrator a much finer de-
gree of control and greater flexibility over end-user access to the database.

Flexibility
As noted above, Sentences’ chapter/profile approach and storage of old data gives
much more flexible access to particular end-users. The highly granular division
into chapters also gives IT organizations a wide variety of options in partitioning
and replicating portions of the information store across platforms and geogra-
phies. This highly distributed architecture is particularly suited for mass-
deployment situations, in which hundreds or thousands of database copies serve
as embedded databases for a key application that runs at the local office level, with
optional data fed back to a central store.

Programmer Productivity
As noted above, Sentences and LazyView can be particularly effective in supporting
rapid development of new applications or rapid, easy upgrading of existing ones.

These solutions are also appropriate for Web services development. Sentences DB
is written in Java, Sentences DE produces Java applets, and Sentences supports
XML  all key elements of today’s Web services development architecture.

Where Lazy Software’s Solutions Can Be Most Effective
Lazy Software’s solutions can be especially effective where users aim to rapidly de-
velop new applications, particularly those involving workgroup and/or geographi-
cally distributed database architectures (the “mass-deployment architectures” cited
above), both in-house and ISV-supplied architectures. In these cases, Sentences’
ability to avoid object relational mismatch and direct-to-data programming should
allow exceptionally speedy development, whereas the chapter/profile approach
should provide exceptionally flexible database distribution.

Lazy Software’s solutions are also apposite where IT organizations seek to create
applications that will require frequent upgrades — in some ways, a description of
all new applications! In these situations, Sentences encourages coding practices
that are much less likely to involve further upgrades when data relationships must
be changed or new data added.

Where users are providing EII capabilities to an enterprise portal or Business Intelli-
gence (BI) solution, LazyView can be particularly useful. LazyView’s ability to com-
bine EII’s capabilities with exceptionally “rich” metadata and caching capabilities
makes it a highly flexible and potentially high-performance tool for these purposes.

Lazy Software, Inc. 8

To provide us with your feedback on this research, please go to www.aberdeen.com/feedback .

Aberdeen Group, Inc.
260 Franklin Street, Suite 1700
Boston, Massachusetts
02110-3112
USA

Telephone: 617 723 7890
Fax: 617 723 7897
www.aberdeen.com

© 2002 Aberdeen Group, Inc.
All rights reserved
September 2002

Aberdeen Group is a computer and communications
research and consulting organization closely monitoring
enterprise-user needs, technological changes and market
developments.

Based on a comprehensive analytical framework,
Aberdeen provides fresh insights into the future of
computing and networking and the implications for
users and the industry.

Aberdeen Group performs projects for a select group of
domestic and international clients requiring strategic
and tactical advice and hard answers on how to manage
computer and communications technology. This docu-
ment is the result of research performed by Aberdeen
Group. It was underwritten by Lazy Software, Inc.
Aberdeen Group believes its findings are objective and
represent the best analysis available at the time of
publication.

Aberdeen Conclusions
Aberdeen finds that Lazy Software’s Sentences and LazyView solutions are able to
combine immediate utility in rapid application development with solid long-term
value in mass-deployment and EII applications. The associative model that under-
lies these solutions ensures that other databases will find it difficult to match these
capabilities over the next few years.

Of course, as a specialized database, Lazy Software is not in direct competition
with enterprise databases. Rather, it should be viewed as a new and powerful tool
for key upcoming projects, with strong long-term potential as a solid base for
mass-deployment applications. In those situations, Lazy Software’s solutions are
worth immediate and careful attention from IT buyers.

http://www.aberdeen.com/feedback

	Preface
	Executive Summary
	The Immediate Need for More Rapid Development
	The Long-Term Need to Avoid “Software Sclerosis”
	Lazy Software’s Associative Model
	How Lazy Software Meets the Need for Rapid Development
	How Lazy Software Solutions Meet the Need to Avoid Software Sclerosis
	How Lazy Software Solutions Meet Database Criteria
	Performance/Scalability
	Manageability
	Flexibility
	Programmer Productivity

	Where Lazy Software’s Solutions Can Be Most Effective
	Aberdeen Conclusions

